Radar Tracking with an Interacting Multiple Model and Probabilistic Data Association Filter for Civil Aviation Applications
نویسندگان
چکیده
The current trend of the civil aviation technology is to modernize the legacy air traffic control (ATC) system that is mainly supported by many ground based navigation aids to be the new air traffic management (ATM) system that is enabled by global positioning system (GPS) technology. Due to the low receiving power of GPS signal, it is a major concern to aviation authorities that the operation of the ATM system might experience service interruption when the GPS signal is jammed by either intentional or unintentional radio-frequency interference. To maintain the normal operation of the ATM system during the period of GPS outage, the use of the current radar system is proposed in this paper. However, the tracking performance of the current radar system could not meet the required performance of the ATM system, and an enhanced tracking algorithm, the interacting multiple model and probabilistic data association filter (IMMPDAF), is therefore developed to support the navigation and surveillance services of the ATM system. The conventional radar tracking algorithm, the nearest neighbor Kalman filter (NNKF), is used as the baseline to evaluate the proposed radar tracking algorithm, and the real flight data is used to validate the IMMPDAF algorithm. As shown in the results, the proposed IMMPDAF algorithm could enhance the tracking performance of the current aviation radar system and meets the required performance of the new ATM system. Thus, the current radar system with the IMMPDAF algorithm could be used as an alternative system to continue aviation navigation and surveillance services of the ATM system during GPS outage periods.
منابع مشابه
Multiple Target Tracking With a 2-D Radar Using the JPDAF Algorithm and Combined Motion Model
Multiple target tracking (MTT) is taken into account as one of the most important topics in tracking targets with radars. In this paper, the MTT problem is used for estimating the position of multiple targets when a 2-D radar is employed to gather measurements. To do so, the Joint Probabilistic Data Association Filter (JPDAF) approach is applied to tracking the position of multiple targets. To ...
متن کاملDetection and Tracking Algorithms for IRST
Infrared search and track system is an integral part of modern weaponry. The detection and tracking algorithm forms the heart of an IRST system and their effectiveness plays an important role in determining performance of the system. This report studies various detection and tracking algorithms for multiple point targets in noisy environment resulting in very low signal to noise ratio. Target d...
متن کاملMulti-Sensor Fusion with Interacting Multiple Model Filter for Improved Aircraft Position Accuracy
The International Civil Aviation Organization (ICAO) has decided to adopt Communications, Navigation, and Surveillance/Air Traffic Management (CNS/ATM) as the 21st century standard for navigation. Accordingly, ICAO members have provided an impetus to develop related technology and build sufficient infrastructure. For aviation surveillance with CNS/ATM, Ground-Based Augmentation System (GBAS), A...
متن کاملFuzzy logic-based multi-factor aided multiple-model filter for general aviation target tracking
A fuzzy logic-based multi-factor aided multiple-model filter (FLMAMMF) for General aviation (GA) maneuvering target tracking (MTT) is presented. The target category and meteorological information are introduced into the interacting multiple model (IMM) filter to perform GA target tracking. Fuzzy logic inference is employed in the proposed algorithm to reflect the complicated relationship betwee...
متن کاملAll Weather Perception: Joint Data Association, Tracking, and Classification for Autonomous Ground Vehicles
A novel probabilistic perception algorithm is presented as a real-time joint solution to data association, object tracking, and object classification for an autonomous ground vehicle in all-weather conditions. The presented algorithm extends a Rao-Blackwellized Particle Filter originally built with a particle filter for data association and a Kalman filter for multi-object tracking (Miller et a...
متن کامل